Adaptive Graph Contrastive Learning for Recommendation

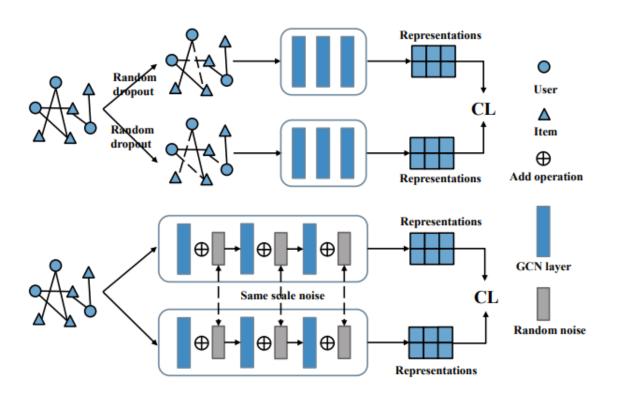
Yangqin Jiang University of Hong Kong Hong Kong, China mrjiangyq99@gmail.com Chao Huang* University of Hong Kong Hong Kong, China chaohuang75@gmail.com Lianghao Xia
University of Hong Kong
Hong Kong, China
aka_xia@foxmail.com

https://github.com/HKUDS/AdaGCL.

(KDD-2023)

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

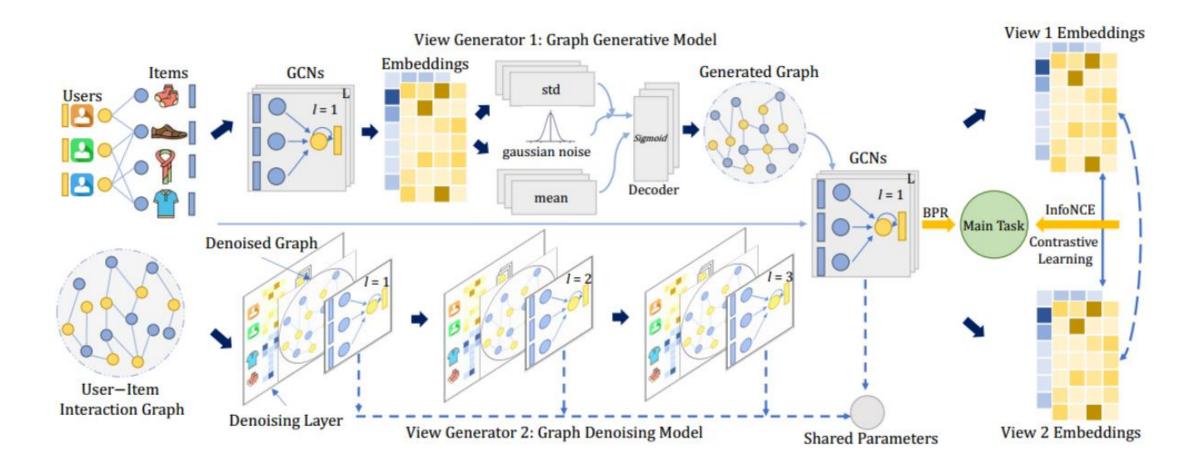


data noise, such as users clicking on irrelevant products

the sparsity and skewed distribution of recommendation data can negatively impact effective user-item interaction modeling.

self-supervised learning creating contrastive views through probability-based random masking or adding noise.

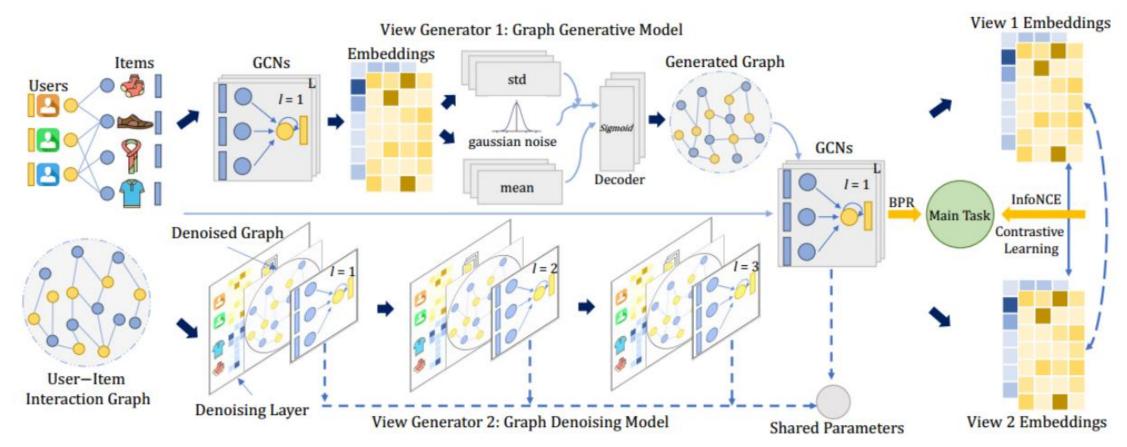
may keep some noisy interactions or drop important training signals



$$\mathcal{U} = \{u_1, \cdots, u_i, \cdots, u_I\}$$

$$\mathcal{V} = \{v_1, \cdots, v_j, \cdots, v_J\}$$

interaction matrix $\mathcal{A} \in \mathbb{R}^{I \times J}$ embedding matrices $\mathbf{E}^{(u)} \in \mathbb{R}^{I \times d}$ and $v \in \mathbb{R}^{J \times d}$



$$\mathbf{z}_i^{(u)} = \bar{\mathcal{A}}_{i,*} \cdot \mathbf{E}^{(v)}, \quad \mathbf{z}_j^{(v)} = \bar{\mathcal{A}}_{*,j} \cdot \mathbf{E}^{(u)},$$

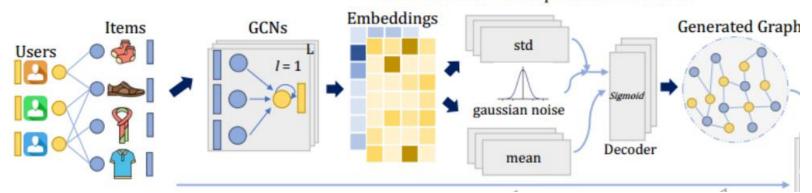
$$\bar{\mathcal{A}} = \mathbf{D}_{(u)}^{-1/2} \cdot \mathcal{A} \cdot \mathbf{D}_{(v)}^{-1/2}, \quad \bar{\mathcal{A}}_{i,j} = \frac{\mathcal{A}_{i,j}}{\sqrt{|\mathcal{N}_i| \cdot |\mathcal{N}_j|}},$$

(1)
$$\mathbf{e}_{i,l}^{(u)} = \mathbf{z}_{i,l}^{(u)} + \mathbf{e}_{i,l-1}^{(u)}, \quad \mathbf{e}_{j,l}^{(v)} = \mathbf{z}_{j,l}^{(v)} + \mathbf{e}_{j,l-1}^{(v)}. \tag{3}$$

(2)
$$\mathbf{e}_{i}^{(u)} = \sum_{l=0}^{L} \mathbf{e}_{i,l}^{(u)}, \ \mathbf{e}_{j}^{(v)} = \sum_{l=0}^{L} \mathbf{e}_{j,l}^{(v)}, \ \hat{y}_{i,j} = \mathbf{e}_{i}^{(u)\top} \mathbf{e}_{j}^{(v)}.$$

$$\mathcal{L}_{ssl}^{user} = \sum_{u_i \in \mathcal{U}} -\log \frac{\exp(s(\mathbf{e}_i', \mathbf{e}_i'')/\tau)}{\sum_{u_{i'} \in \mathcal{U}} \exp(s(\mathbf{e}_i', \mathbf{e}_{i'}''/\tau)},$$
 (5)

View Generator 1: Graph Generative Model



Two MLPs are utilized to derive the mean value and the standard deviation

another MLP as the decoder,
$$p(A_{ij}=1|z_i,z_j)=\sigma(z_i^Tz_j)$$

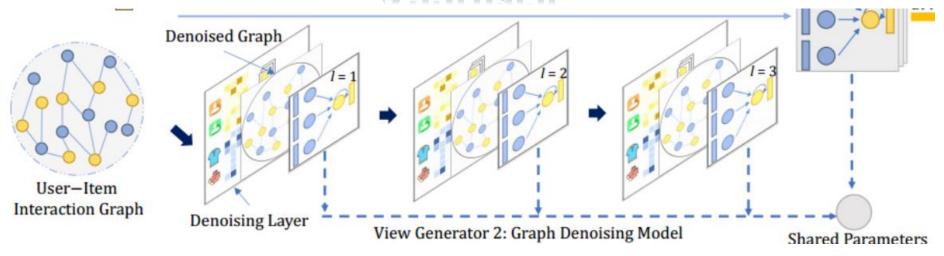
$$\mu = GCN_{\mu}(X,A)$$

$$log\sigma = GCN_{\sigma}(X, A)$$

$$GCN(X,A) = ilde{A}ReLU(ilde{A}XW_0)W_1$$

$$\mathcal{L}_{gen} = \mathcal{L}_{kl} + \mathcal{L}_{dis}, \qquad (6) \qquad L = E_{q(Z|X,A)}[logp(A|Z)] - KL[q(Z|X,A)||p(Z|X,$$

$$\mathcal{L}_{gen} = \mathcal{L}_{kl} + \mathcal{L}_{dis} + \mathcal{L}_{bpr}^{gen} + \lambda_2 ||\Theta||_{\mathrm{F}}^2, \tag{10}$$



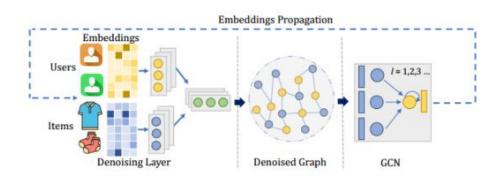


Figure 2: Workflow of the graph denoising model.

binary matrix $\mathbf{M}^l \in [0, 1^{|\mathcal{V}| \times |\mathcal{V}|}]$, [0 indicates a noisy edge]

$$\mathbf{A}^l = \mathbf{A} \odot \mathbf{M}^l$$

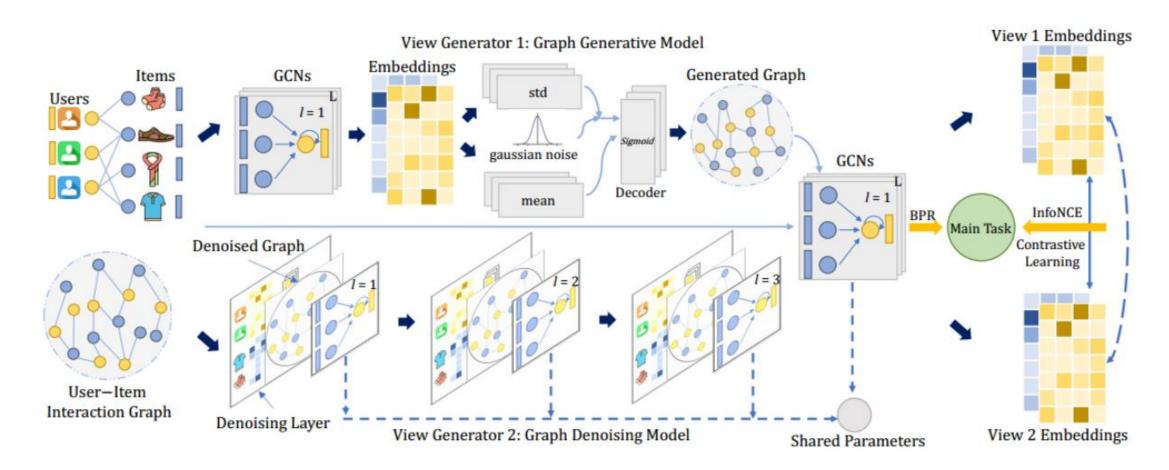
$$\sum_{l=1}^{L} ||\mathbf{M}^{l}||_{0} = \sum_{l=1}^{L} \sum_{(u,v) \in \varepsilon} \mathbb{I}[m_{i,j}^{l} \neq 0], \tag{7}$$

we adopt the reparameterization trick and relax the binary entries $m_{i,j}^l$ from being drawn from a Bernoulli distribution to a deterministic function g of parameters $\alpha_{i,j}^l \in \mathbb{R}$ and an independent random variable ε^l . That is $m_{i,j}^l = g(\alpha_{i,j}^l, \varepsilon^l)$.

$$\alpha_{i,j}^{l} = f_{\theta^{l}}^{l}(\mathbf{e}_{i}^{l}, \mathbf{e}_{j}^{l}),$$

$$\mathcal{L}_{c} = \sum_{l=1}^{L} \sum_{(u_{i}, v_{j}) \in \varepsilon} (1 - \mathbb{P}_{\sigma(s_{i,j}^{l})}(0|\theta^{l})),$$
(8)

$$\mathcal{L}_{den} = \mathcal{L}_c + \mathcal{L}_{bpr}^{den} + \lambda_2 ||\Theta||_{F}^2.$$
 (11)



$$\mathcal{L}_{bpr} = \sum_{(u,i,j)\in O} -\log\sigma(\hat{y}_{ui} - \hat{y}_{uj}), \tag{9}$$

$$\mathcal{L}_{upper} = \mathcal{L}_{bpr} + \lambda_1 \mathcal{L}_{ssl} + \lambda_2 ||\Theta||_{F}^2, \tag{12}$$

$$\mathcal{L}_{lower} = \mathcal{L}_{gen} + \mathcal{L}_{den}. \tag{13}$$

Experiment

Table 2: Performance comparison on Last.FM, Yelp, BeerAdvocate datasets in terms of Recall and NDCG.

Dataset	Metric	BiasMF	NCF	AutoR	PinSage	STGCN	GCMC	NGCF	GCCF	LightGCN	SLRec	NCL	SGL	HCCF	SHT	DirectAU	Ours	p-val.
Last.FM	Recall@20	0.1879	0.1130	0.1518	0.1690	0.2067	0.2218	0.2081	0.2222	0.2349	0.1957	0.2353	0.2427	0.2410	0.2420	0.2422	0.2603	2.1e ⁻⁵
	NDCG@20	0.1362	0.0795	0.1114	0.1228	0.1528	0.1558	0.1474	0.1642	0.1704	0.1442	0.1715	0.1761	0.1773	0.1770	0.1727	0.1911	9.5e ⁻⁵
	Recall@40	0.2660	0.1693	0.2174	0.2402	0.2940	0.3149	0.2944	0.3083	0.3220	0.2792	0.3252	0.3405	0.3232	0.3235	0.3356	0.3531	6.9e ⁻⁵
	NDCG@40	0.1653	0.0952	0.1336	0.1472	0.1821	0.1897	0.1829	0.1931	0.2022	0.1737	0.2033	0.2104	0.2051	0.2055	0.2042	0.2204	5.6e ⁻⁴
Yelp	Recall@20	0.0532	0.0304	0.0491	0.0510	0.0562	0.0584	0.0681	0.0742	0.0761	0.0665	0.0806	0.0803	0.0789	0.0794	0.0818	0.0873	$1.5e^{-6}$
	NDCG@20	0.0264	0.0143	0.0222	0.0245	0.0282	0.0280	0.0336	0.0365	0.0373	0.0327	0.0402	0.0398	0.0391	0.0395	0.0424	0.0439	1.8e ⁻⁸
	Recall@40	0.0802	0.0487	0.0692	0.0743	0.0856	0.0891	0.1019	0.1151	0.1175	0.1032	0.1230	0.1226	0.1210	0.1217	0.1226	0.1315	3.2e ⁻⁶
	NDCG@40	0.0321	0.0187	0.0268	0.0315	0.0355	0.0360	0.0419	0.0466	0.0474	0.0418	0.0505	0.0502	0.0492	0.0497	0.0524	0.0548	2.7e ⁻⁷
BeerAdvocate	Recall@20	0.0996	0.0729	0.0816	0.0930	0.1003	0.1082	0.1033	0.1035	0.1102	0.1048	0.1131	0.1138	0.1156	0.1150	0.1182	0.1216	7.7e ⁻⁶
	NDCG@20	0.0856	0.0654	0.0650	0.0816	0.0852	0.0901	0.0873	0.0901	0.0943	0.0881	0.0971	0.0959	0.0990	0.0977	0.0981	0.1015	4.9e ⁻³
	Recall@40	0.1602	0.1203	0.1325	0.1553	0.1650	0.1766	0.1653	0.1662	0.1757	0.1723	0.1819	0.1776	0.1847	0.1799	0.1797	0.1867	1.3e ⁻²
	NDCG@40	0.1016	0.0754	0.0794	0.0980	0.1031	0.1085	0.1032	0.1062	0.1113	0.1068	0.1150	0.1122	0.1176	0.1156	0.1139	0.1182	2.4e ⁻¹

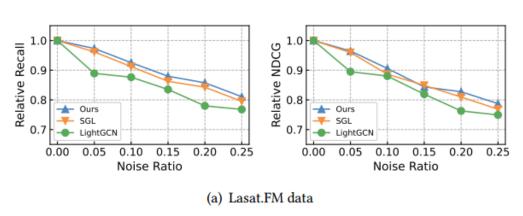
Table 3: Ablation study on key components of AdaGCL.

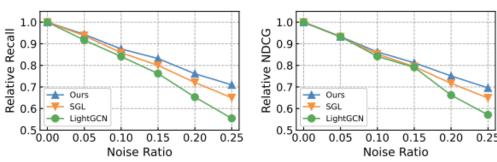
Category	Data		t.FM			BeerAdvocate		
	Variants	Recall	NDCG	Recall	NDCG	Recall	NDCG	
Adaptive	w/o Task Gen+Gen	0.2562	0.1868	0.0849	0.0425	0.1212	0.1010	
Adaptive	Gen+Gen	0.2494	0.1819	0.0853	0.0429	0.1187	0.0992	
Random	EdgeD	0.2476	0.1794	0.0852	0.0424	0.1163	0.0964	
Ada	GCL	0.2603	0.1911	0.0873	0.0439	0.1216	0.1015	

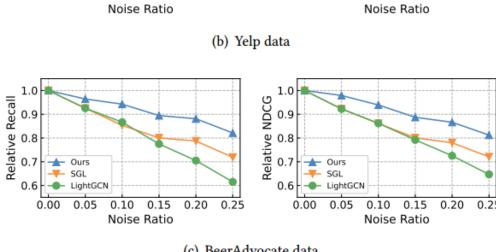
using the random edge drop augmentation

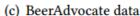
replace the denoising view generator with an identical VGAE-based generator replace the task-aware optimization with the original reconstruction objective

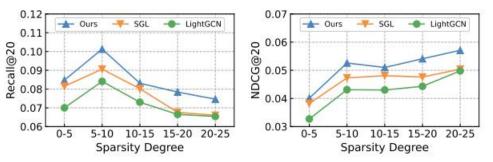
Experiment



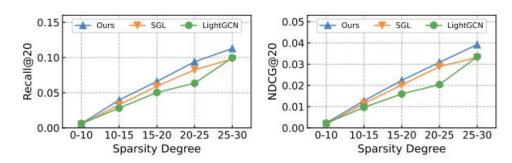




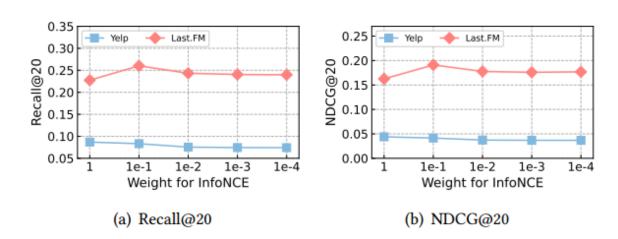




(a) Performance w.r.t. user interaction numbers



(b) Performance w.r.t. item interaction numbers



Experiment

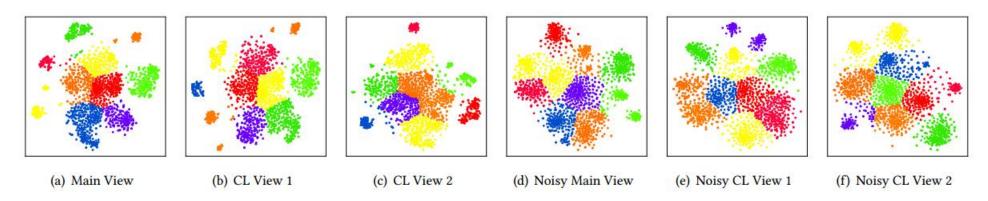


Figure 6: View embedding visualization for AdaGCL.

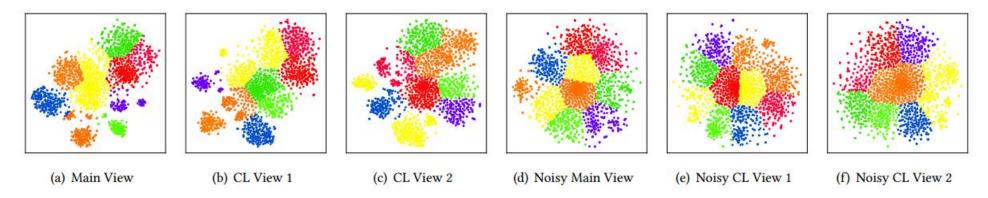


Figure 7: View embedding visualization for SGL.

View 1 and View 2 are generated by the graph generative model and the graph denoising model, respectively.

Thank you!